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Comparative analyses of bats indicate that hibernation is associated with
increased longevity among species. However, it is not yet known if hibernation
affects biological ageing of individuals. Here, we use DNA methylation
(DNAm) as an epigenetic biomarker of ageing to determine the effect of hiber-
nation on the big brown bat, Eptesicus fuscus. First, we compare epigenetic age,
as predicted by amulti-species epigenetic clock, between hibernating and non-
hibernating animals and find that hibernation is associated with epigenetic
age. Second, we identify genomic sites that exhibit hibernation-associated
change in DNAm, independent of age, by comparing samples taken from
the same individual in hibernating and active seasons. This paired comparison
identified over 3000 differentially methylated positions (DMPs) in the genome.
Genome-wide association comparisons to tissue-specific functional elements
reveals that DMPs with elevated DNAm during winter occur at sites enriched
for quiescent chromatin states, whereas DMPs with reduced DNAm during
winter occur at sites enriched for transcription enhancers. Furthermore,
genes nearest DMPs are involved in regulation of metabolic processes and
innate immunity. Finally, significant overlap exists between genes nearest
hibernation DMPs and genes nearest previously identified longevity DMPs.
Taken together, these results are consistent with hibernation influencing
ageing and longevity in bats.
1. Introduction
A variety of mammals save energy during periods of food shortage by entering
into torpor, a physiological state characterized by reduced body temperature
and metabolic rate that lasts a few hours or days [1,2]. More prolonged bouts
of torpor that occur during the winter are referred to as hibernation, and
occur in some rodents, bats, carnivores, hedgehogs, marsupials, tenrecs and pri-
mates [3–5]. Comparisons of gene expression in tissues taken from hibernating
and non-hibernating animals have revealed that hibernation not only sup-
presses metabolic function [6–9] but also protects skeletal muscle from
atrophy [10,11] and inhibits immune function [10,11]. Despite the widespread
occurrence of hibernation among mammals, the genetic mechanisms regulating
this process remain poorly understood in most species [12,13].

Recently, DNA methylation (DNAm) has been used to gain insight into pat-
terns of gene regulation during hibernation [14,15]. DNA is methylated when a
methyl group is added to a cytosine at cytosine–guanine dinucleotide (CpG)
sites [16]. While this change can be functionally silent, DNAm can suppress tran-
scription by recruiting proteins involved in gene repression [15,17] or by altering
chromatin states to inhibit transcription factor binding [18]. Conversely, loss of
DNAm, especially in promoter regions, can permit recruitment of proteins
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involved in gene activation and result in transcription. Examin-
ing patterns of DNAm in a tissue can, therefore, reveal
repressed or elevated transcription of specific genes or gene
pathways in response to environmental changes [16,19].

To date, DNAm has only been examined in a few hibernat-
ing rodent species. Compared to euthermic controls, global
DNAm increased nearly twofold in brown adipose tissue [15]
but decreased in liver and skeletal muscle in 13-lined ground
squirrels, Ictidomys tridecemlineatus [14]. The presence of
DNAmhas also been used to assess tissue-specific transcription
in a hibernation candidate gene (HP-27) in chipmunks (Tamias
asiaticus); DNAm at an upstream stimulatory factor (USF)-
binding site, which partially regulates transcription of HP-27,
was reduced in the liver but increased in the kidneys and
heart [20], which is consistent with liver-specific transcription
for HP-27. In yellow-bellied marmots (Marmota flaviventer),
epigenetic ageing was estimated recently to occur at a faster
rate in the active season compared to the hibernation season [21].

Hibernation occurs inmanyspecies of bats found in temper-
ate regions [3,4,22] and is of particular interest because it is
associated with the evolution of extreme longevity [23]. Here,
we used big brown bats, Eptesicus fuscus, to investigate
the effect of hibernation on patterns of DNAm by microarray
profiling over 37 000 conserved CpG sites [24]. Many of
these sites exhibit reliable change in DNAm with age and, as
a consequence, DNAm can be used to accurately predict
chronological age in many bat species [25]. In addition, some
sites show differences between short and long-lived species in
the rate of change of DNAm [25], suggesting that DNAm pro-
files can provide information regarding the rate of ageing, as
has been demonstrated for humans [26–28]. To assess the influ-
ence of hibernation on DNAm profiles, we used tissue samples
taken in thewinter and summer from bats that undergo natural
annual hibernation. We used these data to determine if epige-
netic age, as predicted by a multi-species bat epigenetic clock,
differs between summer and winter samples, and to identify
sites in the genome that exhibit change in DNAm associated
with hibernation independent of age. Given the results of
prior gene expression studies, we hypothesize that animals
experience reduced epigenetic ageing during hibernation and
that CpG sites that exhibit change inDNAmduring hibernation
are near genes associated with metabolism and immunity.
In addition, we test if CpG sites differentially methylated and
associated with hibernation are independent of sites associated
with differences in bat longevity [25].
2. Methods
The E. fuscus sampled in this study were housed in a captive
research colony at McMaster University in Hamilton, Ontario,
Canada (43.26° N, −79.92°W). Bats in the colony live in an
indoor free-flight area (2.5 × 1.5 × 2.3 m) with year-round access
to a larger (2.5 × 3.8 × 2.7 m) outdoor flight enclosure [29].
Colony temperature and lighting varied with ambient con-
ditions; however, in the winter, a heater kept the indoor colony
temperature above 6°C. Bats have ad libitum access to water
and food (yellow mealworms, Tenebrio molitor, Reptile Feeders,
Norwood, ON). Minimum ages were available for six animals
caught as adults 6–9 years before sampling and exact ages for
14 animals born in captivity. When first sampled, these 20 ani-
mals ranged from 0.7 to 10.1 years of age. Twelve bats were
sampled in February 2020, 20 bats in July 2020 and seven
additional bats in February 2021. We excluded one sample
from five of the wild-caught animals because of illness at
sampling, which left 15 matched pairs from the same animal
(12 winter–summer, 3 summer–winter). Big brown bats in
Ontario typically initiate hibernation in late October and leave
hibernation in early April although animals periodically arouse
every 30–45 days throughout the winter to drink and eliminate
metabolic waste. Thus, winter samples were taken from captive
animals during the hibernation period and summer samples
were from the active period.

We used a circular, sterile Sklar Tru-Punch biopsy tool to excise
one or two 3-mm diameter tissue biopsies from the wing mem-
brane of each bat. Genomic DNAwas extracted from wing tissue
using a Zymo Quick-DNA miniprep plus kit (ZymoResearch,
Orange, CA, USA) using the standard tissue protocol. Samples
with at least 250 ng of DNA but with a concentration below
10 ng µl−1 were concentrated using a 30 kDa centrifugal filter to
reach at least 12.5 ng µl−1 in 20 µl (MilliporeSigma, Burlington,
MA, USA).

DNA samples were processed at the UCLA Neuroscience
Genomics core facility to measure DNAm. After bisulfite conver-
sion, samples were hybridized to a custom Illumina microarray
(HorvathMammalMethylChip40) containing 37 492 probes of
conserved 50 base pair sequences with terminal CpG sites. The
microarray was designed to assay DNAm from any mammal
using probes largely conserved across 62 mammal species [24].
Alignment of the microarray probe sequences to the E. fuscus
genome (v. 1.0) identified genomic positions for 32 217 CpG
sites [25]. These sites were categorized depending on the nearest
transcription start site (TSS) for annotated genes as being in
either intergenic, 30 UTR (untranslated region), 50 UTR, promoter
(minus 10 kb to plus 1000 bp from the nearest TSS), exon or
intron regions. The proportion of DNA molecules methylated
at each CpG site (i.e. Beta values) were obtained after normaliza-
tion using the SeSaME procedure [30] to correct for bias or
variation among plates.

We tested if hibernation influences epigenetic ageing by using
a multi-species epigenetic clock created for 712 known-aged bats
from 26 species [25]. As noted above, we had minimum ages for
6 of 20 bats (30%). We independently estimated the ages of these
animals using a species-specific epigenetic clock created using
‘glmnet’ in R [31], which fitted an elastic net regression model
using an alpha of 0.5 between DNAm beta values and chronologi-
cal age for 60 previously profiled, known-aged E. fuscus [25]. The
estimated ages were, on average, within 1 year of the minimum
ages. We then calculated the residuals between the multi-species
clock predicted age and the chronological age of each individual,
and compared those residuals between winter (hibernating) and
summer (non-hibernating) samples using a linear mixed model,
with season and birthplace (captive or wild) as fixed effects
and bat identity as a random effect fitted by restricted maximum
likelihood. Summary data are reported as mean ± standard error.

To determine if hibernation influences DNAm independent
of age at each CpG site, we fitted linear models for DNAm on
age using the lm function in R [32] for all E. fuscus samples.
We then used the resulting residuals in a linear mixed model
to compare winter and summer age-adjusted DNAm measured
from the same individual with individual included as a
random effect. To correct for multiple testing, we used a Benja-
mini–Yekutieli (BY) false discovery rate (FDR) to obtain
adjusted p-values [33]. Significant CpG sites (BY p < 0.05) are
referred to as differentially methylated positions (DMPs).
Because this analysis compared age-adjusted DNAm in winter
to summer, sites with higher DNAm in the winter are referred
to as ‘winter-up’ and sites with lower DNAm in the winter are
referred to as ‘winter-down’ (see figure 2 for examples).

We used contingency tests to determine if winter-up or winter-
down DMPs were non-randomly distributed in the genome rela-
tive to genomic regions and conducted an analysis of variance
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on the standardized regression coefficients to determine if the
magnitude of the effect differed among genomic regions. We com-
pared distance to TSSs between significant and nonsignificant sites
using a Student’s t-test.We also conducted enrichment analyses on
DMPs using experimentally derived functional element overlap
analysis of ReGions from EWAS, EFORGE v. 2.0 [34]. This pro-
gramme tests for enrichment of functional regulatory elements
by identifying CpG probe sequences associated with DNAse
hypersensitive sites, each of five different histone marks or 15
inferred chromatin states identified in human cell lines derived
from multiple tissue sources by the Epigenomics Roadmap Con-
sortium (https://egg2.wustl.edu/roadmap/web_portal/). By
comparing DMPs to chromatin state or histone associations in
human cell lines, EFORGE allows for tissue-specific enrichment
tests of DNAm. Permutation tests are then run against the species’
genomic background to determine which functional elements
occur non-randomly [34]. We conducted separate analyses for
winter-up and winter-down DMPs only using sites with an
adjusted p-value below 0.05 or the most significant 1000 sites in
each direction if there were more than 1000 significant sites. As
background for the enrichment analysis we selected E. fuscus
with a 1 kb proximity window. These options constrain the analy-
sis to the 32 217 sites on the 37 K array that have been mapped to
the E. fuscus genome and use only one site within 1000 bp on each
of 1000 permutations. As bat wing tissue is comprised of skin,
muscle and blood [35], we only report results for the cell lines
derived from similar tissues. For the histone mark analysis there
were 7 blood cell lines, 3 fetal muscle cell lines and 4 foreskin
cell lines while the chromatin state analysis used 27 blood cell
lines, 12 muscle cell lines and 10 skin cell lines. We used a BY
FDR of 1% to identify enriched regulatory elements.

We then conducted several association tests to determine the
function of genes closest to hibernation DMPs. As multiple
probes on the array often are located nearest the same gene,
the DNAm effect direction on each gene was determined based
on the number of winter-down or winter-up DMPs. Genes
with a greater number of significant winter-down sites were con-
sidered to have reduced DNAm in winter and genes with a
greater number of winter-up sites were considered to have elev-
ated DNAm in winter. Genes with an equal number of winter-up
and winter-down DMPs were not considered to have a signifi-
cant directional effect. We considered all 4808 known genes
nearest to mapped CpG sites in the E. fuscus genome annotation
as background and then used PANTHER v. 16.0 [36] to test for
enrichment of winter-up and winter-down genes with respect
to protein class, cellular component or biological process using
a Fisher’s exact test (FET, FDR < 0.05). In a prior study using
the same array platform, a total of 1491 CpG sites (corresponding
to 700 E. fuscus genes) exhibited significant differences in the rate
of DNAm change between three long-lived and two short-lived
bat species [25]. We used FETs to compare winter-up and
winter-down genes to this list of 700 longevity genes and to
4723 innate immunity genes (downloaded from https://www.
innatedb.com, 14 August 2020) to determine if hibernation
genes are also involved in innate immunity.
3. Results
(a) Hibernation slows epigenetic ageing
A multi-species epigenetic clock [25] predicted ages that cor-
relate highly with the chronological ages of big brown bats
(r2 = 0.941, median absolute error (MAE) = 0.531), although
the predicted age is equal to or greater than the chronological
age in most cases (figure 1a). Moreover, the residuals from a
regression of predicted epigenetic age on chronological age
differ between summer and winter samples (F = 7.94, d.f. =
1, 23, p = 0.0097), but not birthplace (F = 0.13, d.f. = 1, 30,
p = 0.72), and reveal that the epigenetic age of hibernating
bats is 0.77 ± 0.25 years less than the epigenetic age of
non-hibernating bats (figure 1b).

(b) Hibernation primarily increases DNAm across
the genome

A total of 3002 CpG sites mapped (and 78 unmapped) in the
E. fuscus genome showed significant differences in age-
adjusted DNAm across seasons with significantly more
winter-up (77.5%) than winter-down DMPs (X2 = 415.5, p =
2.34 × 10−92). Hibernation DMPs were widely distributed on
195 of 361 genomic scaffolds but not distributed at random
with respect to genomic region (X2 = 336.7, p = 3.28 × 10−75).
Significant DMPs were further from TSSs than nonsignificant
sites in absolute base pair distance (112 021 ± 2879 versus
82 334 ± 7966 bp; t = 9.94, p < 0.0001), but winter-down
DMPs were closer than winter-up DMPs (85 607 ± 5445
versus 119 712 ± 3347 bp; t = 5.33, p < 0.0001) to TSSs. Corre-
sponding to those genomic locations, more DMPs than
expected were located in introns (908 observed/711.8
expected = 1.28; X2 = 54.1, p = 1.92 × 10−13) and intergenic
regions (956/698.5 = 1.37; X2 = 95.0, p = 1.94 × 10−22, but
fewer DMPs than expected were located in exons (803/
1024.6 = 0.78; X2 = 47.9, p = 4.44 × 10−12), promoter regions
(119/202.7 = 0.59; X2 = 34.5, p = 4.18 × 10−9) and 50UTRs
(108/238.3 = 0.45; X2 = 71.2, p = 3.21 × 10−17). DMPs in
30UTR regions were not enriched (108/126.2 = 0.86; X2 =
2.64, p = 0.10). By contrast, the magnitude of the effect due
to the difference in residual DNAm between winter and
summer at DMPs showed only minor variation among geno-
mic regions at sites with either decreased (F = 2.14, d.f. =
6,687, p = 0.047) or increased (F = 3.33, d.f. = 6 2379, p =
0.003) methylation during winter with the only significant
difference revealed by post hoc tests occurring between
winter-up sites at promoters and 30UTR regions (figure 2a).

(c) DNAm changes associated with hibernation
influence metabolic processes, immunity and
longevity

An EFORGE analysis revealed that one histone mark,
H3K4me1, which is often associated with active or primed
enhancers, was enriched in multiple cell lines from all three
tissue sources in winter-down DMPs, but no histone mark
was significantly associated with winter-up DMPs
(figure 3a). The EFORGE analysis of inferred chromatin
states using winter-down DMPs also indicates significant
enrichment for enhancers in cell lines derived from blood,
skin and muscle tissues while winter-up DMPs were highly
enriched for quiescent states in cell lines from all three
tissue sources (figure 3b).

Winter-up DMPs were nearest 739 genes and winter-down
DMPs were nearest 219 genes. Gene ontology enrichment tests
for cellular components revealed that genes associated with
chromatin were significantly enriched for winter-up and
winter-down genes. Winter-down genes were also significantly
enriched for nuclear, chromosomal and non-membrane-
bounded organelle cell components. Winter-down and winter-
up geneswere enriched for gene specific transcription regulators
and transcription factors (figure 4a). Indeed, over 40 biological
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processes were significant after adjusting for multiple testing.
The top 15 significant biological processes were associated
with winter-down genes and 13 of those were associated with
regulation of metabolism or transcription (figure 4b).
Significant overlap was also found between innate immu-
nity genes and genes nearest hibernation DMPs (figure 4c).
Of the 1071 innate immunity genes with sites on the array,
248 (23.2%) exhibited evidence of differential methylation
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(X2 = 9.02, p = 0.0027), a majority of which (188; 75.8%) were
associated with elevated DNAmduring hibernation. Compari-
son of 700 previously identified bat longevity genes to the 958
hibernation genes reveals 306 genes in common (figure 4c)—
dramatically more than expected by chance (X2 = 290.6, p =
3.68 × 10−65), with 52 (17%) longevity genes associated with
winter-down DMPs. Moreover, 41 genes nearest winter-down
DMPs and associated with bat longevity exhibit differential
gene expression during hibernation or torpor in other
mammals and six have been previously identified as candidate
torpor genes (electronic supplementary material, table S1).
4. Discussion
Application of a multi-species bat epigenetic clock [25] pro-
vides strong evidence that hibernation is associated with
slower epigenetic ageing. The multi-species clock explains
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94% of the variation in the chronological ages of both hiber-
nating and non-hibernating big brown bats; however, the
clock estimates are equal to or greater than the chronological
age, suggesting big brown bats age slightly faster than a
‘typical’ bat, especially during the active period (figure 1).
The multi-species bat clock was created using DNAm data
from 26 species, some of which have longer lifespans for
their body sizes than big brown bats (cf. figure 2, [25]). More-
over, comparison of deviations from a regression of predicted
on true ages reveals that the epigenetic age of hibernating
bats is nearly a year less than non-hibernating bats after
adjusting for age. This finding provides direct evidence that
hibernation is associated with reduced epigenetic ageing in
bats (Order Chiroptera), and is consistent with a recent
study in marmots (Order Rodentia) that reached the same
conclusion [21]. Because the multi-species clock only uses
DNAm from 162 CpG sites, this result does not reveal the
extent to which hibernation influences DNAm in the
genome. After adjusting for age, comparison of DNAm at
over 32 000 sites profiled in samples taken from the same
animal during the winter hibernation period versus the
summer active season reveals that hibernation alters DNAm
at over 3000 DMPs widely distributed in the genome of
E. fuscus.Over three times as many DMPs exhibited increased
DNAm as opposed to decreased DNAm during hibernation.
Given that elevated DNAm is typically associated with sup-
pressed gene transcription, this result is consistent with a
reduction in the activity of many genes during hibernation.

The amount of DNAm can vary by tissue; however, the
EFORGE analysis revealed evidence of consistent enrichment
of histone marks and inferred chromatin states in multiple
human cell lines derived from blood, skin and muscle tissues
(figure 3). Winter-up DMPs were not associated with any his-
tone marks but were highly associated with quiescent
chromatin states in all cell lines. Given that quiescence is a
stress-resistant state in which cells suspend most processes,
this finding is consistent with reduced metabolism and
immune function during hibernation [6,37]. By contrast,
winter-down DMPs were enriched for H3K4me1, a histone
mark associatedwith enhancers [38] and enriched for enhancer
chromatin states. In other words, winter-down DMPs were
associated with active gene transcription. We suspect these
results provide a conservative estimate of the number of regu-
latory factors involved both because the array only samples a
fraction of possible enhancer regions and because enhancer
motifs can differ among mammals [39]. Nevertheless, the
strength and consistency of the evidence for enhancer enrich-
ment across multiple cell lines indicates there must be
substantial sequence conservation at these regions.

Enrichment analysis of winter-up genes failed to detect
significant enrichment for any biological process, indicating
that elevated DNAm during hibernation is associated with a
diverse ensemble of genes in proportion to their relative
abundance on the array. By contrast, enrichment analysis of
winter-down genes found evidence for enrichment of DNA-
binding transcription factors, especially those involved in
regulating metabolic processes (figure 4). This result is consist-
ent with the EFORGE analysis and with previous findings on
squirrels and marsupials that found increased expression of
genes involved in cold-tolerant mechanisms of metabolism
and regulation of pathways involved in protein turnover
[5,40] or cryoprotection [5,41] during hibernation.

In addition to being associated with regulating metabolic
processes, genes nearest to hibernation DMPs were also more
likely to be involved in innate immunity and bat longevity as
indicated by different age-dependent rates of change in DNAm
between short-lived and long-lived bats [25]. Most (79%) of the
52 genes nearestwinter-downDMPs associatedwith bat longev-
ity exhibit differential gene expression during torpor in other
mammals (electronic supplementary material, table S1). These
results are consistent with longevity in bats being associated
with periodic episodes of reduced energy consumption due to
lowered metabolism and suppressed immune function. This
study illustrates how DNAm profiling using nonlethal tissue
samples can provide real-time insight into the epigenetic control
of physiological processes, such as hibernation.
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