lecture 21: amino acid and lipids

N-transport amino &cid: donate nitrogen in the biosynthesis of amino acid
Glutamate nucleic acid and other N-containing compound
OR

Glutamine Introduced into aspartate and asparagine

Aspartate —— nitrogen donor in numerous aminotransferase reactions

asparagine —— nitrogen storage and transport compound

They are the magor amino acid transported in phloem



Enzymes responsible for the N-transport amino acid synthesis

glutamine synthase (GS)

glutamate snthase (GOGAT)
glutamate dehydrogenase (GDH)
aspartate aminotransferase (AspAT)
asparagine synthase (AS)

These enzymes are involved in

Jprimary assimilation of inorganic nitrogen

.secondary assimilation of free ammonium within plants
because plants have to recycle its ammonium
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Fig.8.5 the major inorganic nitrogen assimilation pathway in plants
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(A) Glutamine-dependent asparagine synthesis
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Transgenic tobacco over-expressing
GSl (cytosolic form)

Fig. 8.22 (20 mM L-PPT)
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Strategies making herbicide tolerant plants (box 8.4)

1. over-expressing the target enzyme such as the GS

2. express enzymes that detoxify or degrade the inhibitors
|.e. express phosphinothricin acetyltransferase (bar) gene isolated from
streptomyces hygroscopicus which confers resistance to L-PPT (basta).

3. introduce mutant target enzymes that are less sensitive to the inhibitors
|.e. an naturally occurring form of EPSP synthase from agrobacteriais
tolerant to high concentration of glyphosate (Roundup).
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501-504, table 10.4



Does lipid composition affect chilling sensitivity?

2°C one day 25°C

Fig. 10.45 cucumber is achilling sensitive plant
(also rice, soybean, cotton, maize tropical fruits)



Decreased unsaturation resulted in chilling sensitivity
to Arabidopsis which is a cold-resistant plant

[A) (B)

(C) (D)

Name  Subcellular location fatty acid substrate double bond site
FAD?2 ER 18:14° Al
FADG chloroplast 16:147 18:14° w6

FAD1



pretreated at 4°C for 4 days

Both pots were kept -5°C for 4 days, and
then grow at 230C for 10 days

Fig. 10.48 cold acclimation allowed plants

to survive freezing
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(A) Phosphatidylcholine (B) Triacylglycerol
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drop of oil (triacylglycerol)
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Fig. 10.28 EACO-high erucic acid containing oil

erucic acid: 22:13is present 50% in rapeseed oil (brassica napus)
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Fig. 10.69 Canolaisthe world third largest source of vegetable oil



Genetic engineering of lipids

1. inhibit b-ketoacyl-CoA synthase gene to reduce erucici acid ( Canola)

2. co-suppression of oleoyl desaturase in soybean
oleic acid increases from 10% to >85% of the total fatty acids

satuated fatty acis reduced from >15% to <5%
The oil from these soybeans will have improved health benefits and improved stability
3. In coriander, acyl-ACP-ACP desaturase has been cloned, which is responsible
for petroselinic acid (18:19 © biosynthesis. petroselinic acid is a cis-unsaturated fatty acid
with a melting temperature above room temperature, suitable for margarine manufacture
but without the high saturated fatty acid content associated with health problems.
At least two other genesfor its biosynthesis have to be cloned and introduced into the same plant.
4. increase the yield: over express ACCase and acyltransferase
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I|ndustrial applications of vegetable olls:

Current:
soaps, detergent, paint, varnishes, lubricant, adhesives and plastics

Future:

biodiesdls,

expand the range of fatty acids produced from crop,
so thelr usage can be expanded.



Production of biodegradable plastics
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