Lecture 1: Mutagen

Lecture 2: Mutagenesis and Mutant Types

Lecture 3: Mutant Characterization

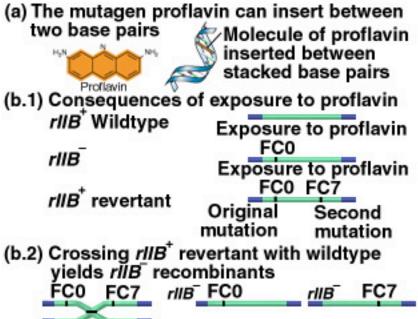
I. Mutation

Changes in DNA, heritable, mostly devastating, few good

Substitution-1 base --> one of the three other bases
 Transition: purine --> purine or pyrimidine --> pyrimidine
 A--> G or G--> A
 T--> C or C--> T

Transvertion: purine --> pyrimidine or vice versa A--> T, C; G -->T,C; T-->A, G; C-->A,G

causes missense, nonsense, silent, neutral or splicing mutational effects


- 2. Deletion or insertion-often causes frameshift mutation
- 3. Chromosomal rearrangement inversion or translocation can change multiple genes

Amino acid effects of point mutations

tyrosine TAT, TAC

TAT -> CAT tyr -> his misense TAT -> TAA tyr -> stop nonsense TAT -> TTT tyr -> phe neutral in many cases TAT -> TAC tyr-> tyr silent © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Frameshift mutations

(c) Different sets of mutations generate either a mutant or a normal phenotype

Proflavin-induced mutations (+) insertion (-) deletion	Phenotype	
– or +	Mutant	
or + +	Mutant	
or	Mutant	
-+	Wildtype	
or or + + + or + + + + + +	Wildtype	

(d) Three single base deletions (- - -)

ATG AAC AAT GCG CCG GAG GAA GCG GAC

Three single base insertions (+++)

(e) Single base deletion (-)

correct triplet

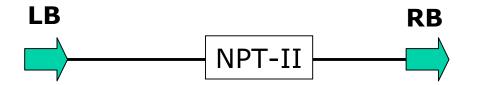
incorrect triplet

II. Mutagen and Mutagenesis

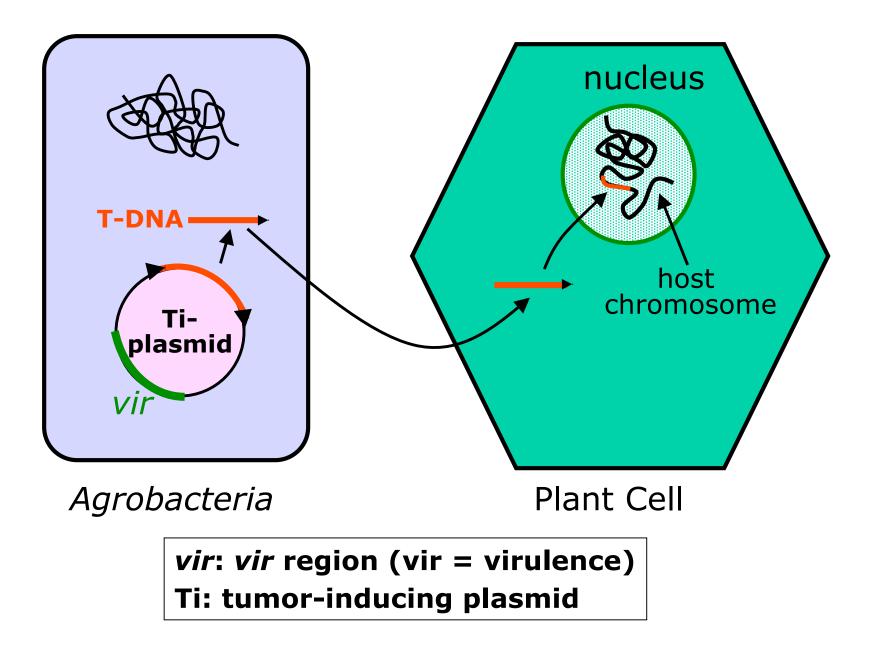
1. Spontaneous mutation is rare: 2-12X 10⁻⁶ (per generation per gene)

Spontaneous mutations can be caused by a. mistakes made during DNA replication (error rate 10⁻⁹) b. environmrntal effect: UV light: thymidine dimer X-ray: break sugar-phosphate DNA back bone Oxidative damages: G --> 8-oxodG (pair with A) c. chemical changes (hydrolysis): depurination; A,G --> 0 deamination: C--> U

2. Mutagen treatment greatly increases the mutation rate


Exposure to X-ray, UV light

Chemical treatment: base analogs 5'-bromouracil (=T or rarely C) hydroxylating agent (add OH-group to C) alkylating agent such as EMS (ethylmethane sulfonate) deaminating agent such as nitrous acid intercalating agent such as Acridine Orange Transposons that insert into a gene and disrupt the normal reading frame


Plant transposon-tagging

Transposon mutagenesis facilitates gene cloning

1. T-DNA (transfer DNA) from *Agrobacterium tumefaciens Agrobacterium causes crown-gall diseases in plants (page 877 Buchanan book). This tumor-inducing (Ti) ability is linked to the Ti-plasmid. During the infection, a segment of the Ti-plasmid, the T-DNA, is transferred into the plant cell and integrated into the plant genome.*

Principles of gene transfer from Agrobacteria into plant cells

2. Ac/Ds: Maize transposons. Ac/Ds can function in other plants (chapter 7 page 334-335)

Ac: activator, autonomous, 4.6 kb long, enocdes a 3.5 kb transcript of transposase

Transposase Ds: dissociation, non autonomous

-both Ac and Ds have 11 bp inverted repeats at the ends, which function in the transposase recognition

-an 8 bp direct repeat generated from the host genome-footprint

Type of mutations:

- a) null mutation- complete absence of activity
- b) loss of function loss of most of activity
- c) gain of function- new function of gene
- d) suppressors- compensate for other mutations
- e) enhancer- enhances phenotype of a mutation

Type of mutational effects

Recessive

hypomorph: reduced level or a protein with a weak function Null: complete loss of function

Dominant

hypermorph: increased level or more effective activity neomorphic: new function dominant-negative: poisonous effect haploid-insufficient semi-dominant/incomplete dominance Mutagenesis scheme in Arabidopsis

Part II

Mutagenesis

Screen:

Visual: trichome, flower morphology Biochemical pathway mutant (trp- auxotrophy) Reporter gene expression (luc bioluminescent protein from firefly)

Selection:trp1trp pathway: 5-methylanthranilate ---> 5'methyltrp (toxic)ADH (alcohol dehydrogenase): Allyl alcohol---> acrolein aldehyde (toxic)

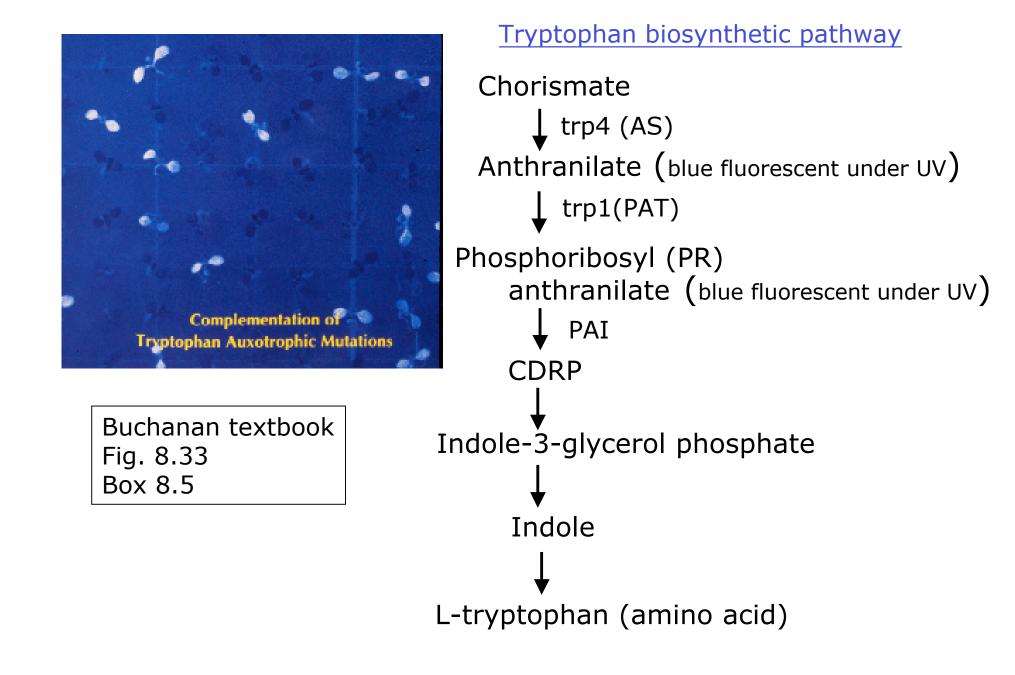
Lethal mutations: (such as house keeping genes) -maintain as heterozygote -weak hypomorph -conditional (ts)

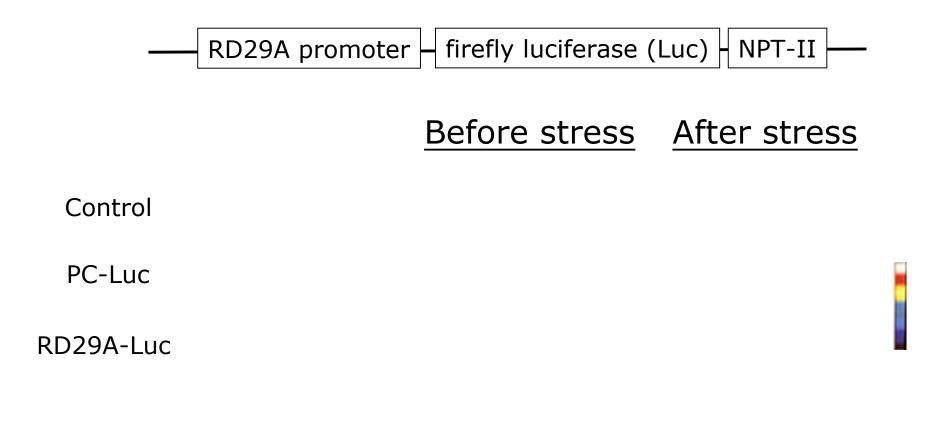
morphological mutant

wt

gl (GLABRA) 1


WT Arabidopsis flower




ap2-2 floral mutant

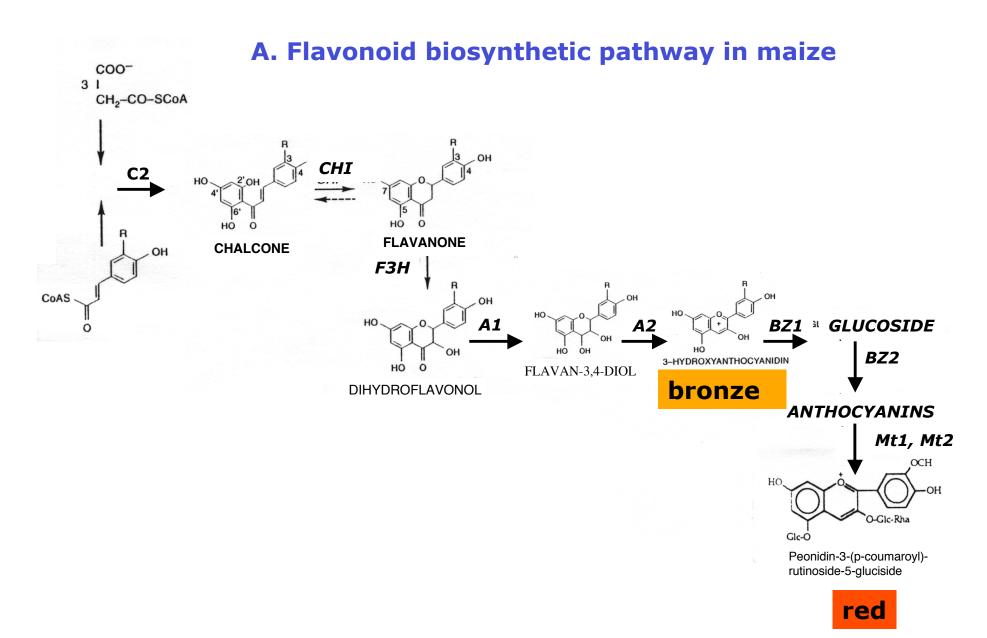
sex-determination mutant
(tsl2 =tassel seed 2)

Mutagenizes RD29A-Luc transgenic plants to look for mutants that stop fluorescence under cold stress

III. Mutant characterization

(1) Determine recessive or dominant nature of the mutation

$$\begin{array}{c} C_1C_1 \ (\text{Colorless mutant}) \\ & \swarrow \\ C_1/+ \ (\text{red: recessive}) \\ (\text{colorless: dominant}) \\ & \downarrow \\ & \swarrow \\ & \swarrow \\ & \downarrow \\ & \swarrow \\ & \swarrow \\ & 1/4 \\ & 1$$


(2) determine allelism by complementation tests

pairwise crosses between homozygotes and examine F1 for phenotype only applicable for recessive mutations

male	C_1C_1	C ₂ C ₂	C ₃ C ₃	C_4C_4	C_5C_5	C ₆ C ₆	<u>female</u>
	Colorless	red	red	colorless	red	red	C_1C_1
	CO	lorless	color	less red	red	red	C ₂ C ₂
			coloi	rless red	red	red	C ₃ C ₃
				colorle	ss red	red	C ₄ C ₄
				col	orless	colorless	C ₅ C ₅
						colorless	C ₆ C ₆

Maize kernel mutants:	Three complementation groups:			
C ₁ -C ₆ : colorless, recessive wt: red	1. c_1 , c_4 2. c_2 , c_3 3. c_5 , c_6			

(3) epistasis analyses (genetic interactions among different mutations)

WT: Mutations in c2, a1, a2: Mutations in bz1, bz2:

Red Colorless bronze

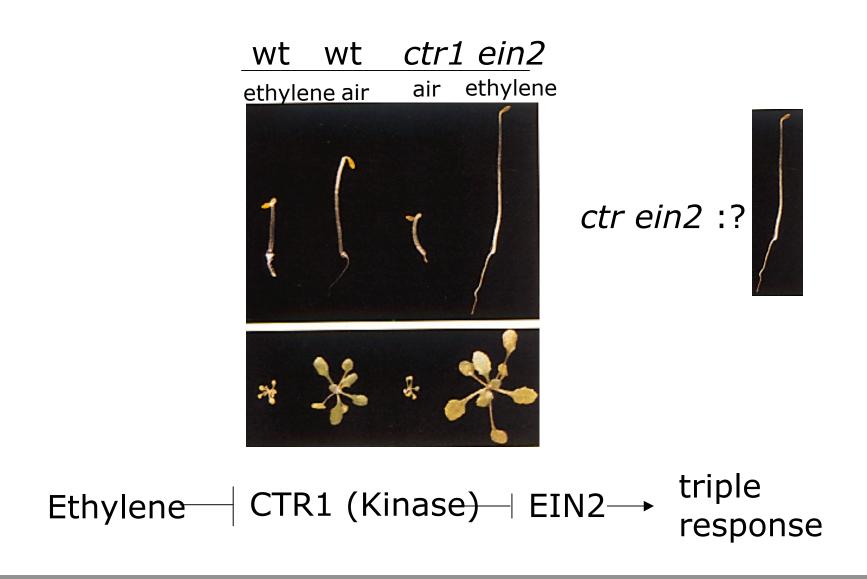
Double mutants

C2/a1: colourless-but uninformative bz1/a1: colorless-a1 comes before bz1 bz2/a1: colorless-a1 comes before bz2

For biosynthetic pathways, the phenotype of the earlier gene in the pathway shows in the double mutant. ie. the earlier-step mutant is <u>epistatic</u> to the late-step mutant

Determine relationship between a1 and c2 by feeding experiment: add flavanone (naringenin): c2+naringenin = red a1+naringenin = colorless

B. Regulatory pathways


Signal $\rightarrow A \rightarrow B \rightarrow C \rightarrow D \rightarrow gene expression$

Positive action-stimulate next step.
 Null mutation makes insensitive to signal

Negative action-represses next step.
 Null mutation makes the gene turned on at all time (constitutively

b⁻: never turned on even in the presence of the signal C⁻: constitutive on in the absence of signal $b^{-}c^{-} = c^{-}$: constitutively on

For regulatory pathways, the phenotype of the later-acting genes shows in the double mutant.ie. the later-acting mutant is <u>epistatic</u> to the earlier-acting mutant

For regulatory pathways, the phenotype of the later-acting genes shows in the double mutant. ie. the later-acting mutant is <u>epistatic</u> to the earlier-acting mutant

C. Additive pathways

Double mutants of dissimilar phenotypes produce a combination of both phenotypes

Indicate that the two mutations are in genes acting in separate pathways

ap2-2 (flower abnormal) X gl (no trichome)

ap2-2 gl double mutant abnormal flower and no trichome

Home work assignment: 2001 Springs' mid term exam questions 1-4 (pdf file on the web)