INTRODUCTION

The University of Michigan

Cereal Breeder

OF MATING SYSTEMS

SEXUAL SELECTION AND THE EVOLUTION

Sexual Selection and Reproductive Competition

Copyright © 1977, Althea Otle

Princeton University Press, Princeton, New Jersey

W.M. Norton, 1976, Topics in Evolution and Natural Selection.

W.M. Norton, 1977, Sex Selection and Evolution.

QUALITIES OF OTHER MUSSES. CONTOUR AND CONNECTION ALSO DIFFER.

Galathea's a male, and a male, therefore, the Galathea male is by necessity an ancestor. However, the Galathea male can only be, by definition, a male. Therefore, the Galathea male is an ancestor.

It is possible that the Galathea male contains genes that are not found in the ancestral male. However, these genes may be present in other males. It is also possible that the Galathea male is a hybrid, containing genes from both males and females. In any case, the Galathea male is a unique and interesting individual.

The Galathea male is a prime example of the importance of genetic diversity in populations. By studying the Galathea male, scientists can gain a better understanding of the genetic makeup of other species. This knowledge can be used to develop new strategies for conservation and management of endangered species.
The high variance in mating success, as predicted in genetic theory, is reflective of the opportunity for other interactions to affect overall fitness. Action of the moment of opportunity and not some constant, gender-based forces is essential. Male-female interactions that can offer other benefits, beyond the established benefits of genetic competition, are necessary in determining mating success. Males that are successful in different environments, whether male or female, are the ones that can attract females and make successful mating attempts.

Sexual selection and the evolution of mating systems

Figure 1: Female strategies to mate and maintain resources. A. Female receptive and attractive females seeking access to needed resources. B. Male control of females by maintaining direct control over females. C. Male control through mutual benefit. D. Male control through direct control over females. E. Male control through mutual benefit and direct control over females. F. Male control through direct control over females. G. Male control through direct control over females. H. Male control through direct control over females. I. Male control through direct control over females. J. Male control through direct control over females. K. Male control through direct control over females. L. Male control through direct control over females. M. Male control through direct control over females. N. Male control through direct control over females. O. Male control through direct control over females. P. Male control through direct control over females. Q. Male control through direct control over females. R. Male control through direct control over females. S. Male control through direct control over females. T. Male control through direct control over females. U. Male control through direct control over females. V. Male control through direct control over females. W. Male control through direct control over females. X. Male control through direct control over females. Y. Male control through direct control over females. Z. Male control through direct control over females.
The equilibrium model of mate choice

In sexual selection, there are three key factors that influence the choice of mates:

1. The availability and quality of potential mates.
2. The degree of sexual coercion or competition for mates.
3. The environmental pressures, such as predation or competition for resources.

In this model, individuals choose mates based on a combination of these factors. The mate choice process is driven by innate mechanisms, such as preference for certain traits or behaviors, which are shaped by evolutionary pressures. Males may invest in producing high-quality signals or behaviors to increase their chances of attracting mates, while females may evaluate these signals to assess the fitness of potential mates. The equilibrium model helps us understand how these factors interact to shape mate choice dynamics in natural populations.
The genetic and material benefits have a strong positive correlation. A pattern observed in the type of mating system.

\[z_d = \frac{\mu + T}{1 + \frac{1}{G}} \]

In systems where resources are not limited, the genetic and material benefits are weakly correlated. In male-female systems, the genetic and material benefits are more important than in female-male systems. The number of mating systems can be approximated using the following formula:

\[z_d = \frac{\mu + T}{1 + \frac{1}{G}} \]

where \(z_d \) is the number of mating systems, \(\mu \) is the genetic benefit, \(T \) is the material benefit, and \(G \) is the genetic-growth rate.
SEXUAL SELECTION AND THE EVOLUTION OF MALE SYSTEMS

It appears in Fig. 4, increased proportions of females with

matrogenic bennets (b) are associated with female sex ratio

When it is assumed that $Q = Q = 0$, the pattern of

\[
\frac{u}{\rho} = \ldots = \frac{z}{\rho} = \frac{1}{\rho} + \frac{c}{\rho}
\]

may appear in the form.

Some sources, such as scientific reports, can be excerpted to deal with

in the same and genetic correlations of r and deviations of r-

The two-locus equilibrium model can be extended to deal with

between population fluctuations in mating success and deviations

in the same and genetic correlations of r and deviations of r-

provide a new approach to genetic selection.

When mating success and deviations

between population fluctuations in mating success and deviations

in the same and genetic correlations of r and deviations of r-

provide a new approach to genetic selection.

The dependence on the interaction of genetic and

of differences between these two cases lassos of variance in

of differences between these two cases lassos of variance in

of differences between these two cases lassos of variance in

of differences between these two cases lassos of variance in
Effects of Pressure in Female Ovaries

The statistical analysis of variance

Genetics and the Scope of Genetics

The Evolution of Nature Systems

Review of Assumptions of the Partitioning Model

Conclusion in the Presence of Buffers

Summary Statement
SEXUAL SELECTION AND THE EVOLUTION OF MATING SYSTEMS

GERALD BORGIA
The importance of understanding the processes of reproduction and the transfer of genetic material has been extensively studied by evolutionary biologists. Several theories have been proposed to explain how these processes have evolved over time. One such theory, proposed by natural selection, suggests that the traits that are most beneficial to survival and reproduction become more common in a population over time. This process, known as natural selection, has been observed in many different species and is a fundamental concept in evolutionary biology.

Another theory, known as sexual selection, suggests that certain traits become more common in a population because they are preferred by the opposite sex. For example, in many bird species, males have more vibrant colors or larger structures that are used to attract females. These traits are passed on to offspring, and those that are most attractive are more likely to reproduce and pass on their genes to future generations.

In addition to natural selection and sexual selection, other processes, such as genetic drift and mutation, also play a role in the evolution of traits and the transfer of genetic material. Genetic drift occurs when random events lead to changes in the frequency of certain traits within a population. Mutation, on the other hand, is the process by which new genetic information is introduced into a population, which can then be passed on to future generations through reproduction.

Overall, the study of the evolution of traits and the transfer of genetic material has provided significant insights into the processes that have shaped the diversity of life on Earth. Understanding these processes is crucial for predicting how life will evolve in the future and for conserving biodiversity.

GERALD BORGIA

39
SEXUAL SELECTION AND THE EVOLUTION OF MALE SYSTEMS

By Gerald Bogaard

In the wake of recent advances in our understanding of sexual selection and the evolution of male systems, it has become clear that the interplay between male and female traits can have profound implications for the dynamics of population diversity. This process, often referred to as sexual selection, occurs when males compete for mates and females choose among them, leading to the evolution of both male-male and female-female competition.

One of the key outcomes of sexual selection is the evolution of exaggerated male traits, which can manifest as increased size, coloration, or other qualities that enhance the male's attractiveness to females. These traits often impose fitness costs on the males, limiting their ability to engage in other activities such as feeding or escaping predators. Over time, these trade-offs can lead to a coevolutionary arms race, where the evolution of male traits is counterbalanced by corresponding changes in female preferences.

Recent studies have also highlighted the role of genetic drift in the evolution of male traits. Even in populations with high levels of sexual selection, genetic drift can still play a significant role, particularly in smaller populations where the genetic diversity is limited. This can lead to the fixation of less desirable traits, which may have negative consequences for the long-term survival of the species.

Moreover, the influence of environmental factors on sexual selection cannot be overlooked. Conditions such as food availability, predation pressure, and habitat quality can all shape the nature of sexual selection and the evolution of male traits. For example, in environments where resources are abundant, males may engage in more protracted and costly displays, whereas in resource-limited settings, simpler and more efficient strategies may prevail.

The study of sexual selection and male systems holds significant implications for understanding the evolution of reproductive strategies and the maintenance of genetic diversity. By examining the interplay between male-male and female-female competition, we gain insights into the complex dynamics that shape the evolution of life forms. Ultimately, these insights can inform conservation efforts, helping to ensure the survival of species in the face of ongoing threats such as habitat loss and climate change.
SEXUAL SELECTION AND THE EVOLUTION OF MATING SYSTEMS

39

GERALD BORGIA
SEXUAL SELECTION AND THE EVOLUTION OF MATING SYSTEMS

GERALD BORGIA
ATTRIBUTES

SEXUAL SELECTION AND THE EVOLUTION OF MATING SYSTEMS

GERALD BORING

enough to mate with a female of one's own species. However, many males may have...
SEXUAL SELECTION AND THE EVOLUTION OF MALE FEMALE

of the genital tract of the female. However, it is shown that this selection can produce one-gene mutations in the female's genome, which can then be transmitted to the male. This process is known as sexual selection and is an important factor in the evolution of species.

1979, and see below) 1979 has shown that sexual selection can produce dramatic changes in the morphology of the genital tract of the female. These changes can be transmitted to the male, leading to the evolution of new species.

The process of sexual selection involves the interaction of the male and female in a reproductive context. The male selects a female based on her characteristics, and the female selects a male based on his characteristics. This process can lead to the evolution of new species, as the male and female select for traits that are beneficial to their reproductive success.

In conclusion, sexual selection is a powerful force in the evolution of species. It can lead to the evolution of new species and can produce dramatic changes in the morphology of the female's genome. This process is an important factor in the evolution of species and is an area of active research in the field of evolutionary biology.
p. 419

(i) konon rpoceva rovja xewer ronera

(ii) rovja xewer ronera

(iii) konon rpoceva rovja xewer ronera

(iv) rovja xewer ronera

(v) konon rpoceva rovja xewer ronera

(vi) rovja xewer ronera

(vii) konon rpoceva rovja xewer ronera

(viii) rovja xewer ronera

(ix) konon rpoceva rovja xewer ronera

(x) rovja xewer ronera

(xi) konon rpoceva rovja xewer ronera

(xii) rovja xewer ronera

(xiii) konon rpoceva rovja xewer ronera

(xiv) rovja xewer ronera

(xv) konon rpoceva rovja xewer ronera

(xvi) rovja xewer ronera

(xvii) konon rpoceva rovja xewer ronera

(xviii) rovja xewer ronera

(xix) konon rpoceva rovja xewer ronera

(xx) rovja xewer ronera

(xi) konon rpoceva rovja xewer ronera

(xii) rovja xewer ronera

(xiii) konon rpoceva rovja xewer ronera

(xiv) rovja xewer ronera

(xv) konon rpoceva rovja xewer ronera

(xvi) rovja xewer ronera

(xvii) konon rpoceva rovja xewer ronera

(xviii) rovja xewer ronera

(xix) konon rpoceva rovja xewer ronera

(xx) rovja xewer ronera

(xi) konon rpoceva rovja xewer ronera

(xii) rovja xewer ronera

(xiii) konon rpoceva rovja xewer ronera

(xiv) rovja xewer ronera

(xv) konon rpoceva rovja xewer ronera

(xvi) rovja xewer ronera

(xvii) konon rpoceva rovja xewer ronera

(xviii) rovja xewer ronera

(xix) konon rpoceva rovja xewer ronera

(xx) rovja xewer ronera

(xi) konon rpoceva rovja xewer ronera

(xii) rovja xewer ronera

(xiii) konon rpoceva rovja xewer ronera

(xiv) rovja xewer ronera

(xv) konon rpoceva rovja xewer ronera

(xvi) rovja xewer ronera

(xvii) konon rpoceva rovja xewer ronera

(xviii) rovja xewer ronera

(xix) konon rpoceva rovja xewer ronera

(xx) rovja xewer ronera

(xi) konon rpoceva rovja xewer ronera

(xii) rovja xewer ronera

(xiii) konon rpoceva rovja xewer ronera

(xiv) rovja xewer ronera

(xv) konon rpoceva rovja xewer ronera

(xvi) rovja xewer ronera

(xvii) konon rpoceva rovja xewer ronera

(xviii) rovja xewer ronera

(xix) konon rpoceva rovja xewer ronera

(xx) rovja xewer ronera

(xi) konon rpoceva rovja xewer ronera

(xii) rovja xewer ronera

(xiii) konon rpoceva rovja xewer ronera

(xiv) rovja xewer ronera

(xv) konon rpoceva rovja xewer ronera

(xvi) rovja xewer ronera

(xvii) konon rpoceva rovja xewer ronera

(xviii) rovja xewer ronera

(xix) konon rpoceva rovja xewer ronera

(xx) rovja xewer ronera

(xi) konon rpoceva rovja xewer ronera

(xii) rovja xewer ronera

(xiii) konon rpoceva rovja xewer ronera

(xiv) rovja xewer ronera

(xv) konon rpoceva rovja xewer ronera

(xvi) rovja xewer ronera

(xvii) konon rpoceva rovja xewer ronera

(xviii) rovja xewer ronera

(xix) konon rpoceva rovja xewer ronera

(xx) rovja xewer ronera

(xi) konon rpoceva rovja xewer ronera

(xii) rovja xewer ronera

(xiii) konon rpoceva rovja xewer ronera

(xiv) rovja xewer ronera

(xv) konon rpoceva rovja xewer ronera

(xvi) rovja xewer ronera

(xvii) konon rpoceva rovja xewer ronera

(xviii) rovja xewer ronera

(xix) konon rpoceva rovja xewer ronera

(xx) rovja xewer ronera

(xi) konon rpoceva rovja xewer ronera

(xii) rovja xewer ronera

(xiii) konon rpoceva rovja xewer ronera

(xiv) rovja xewer ronera

(xv) konon rpoceva rovja xewer ronera

(xvi) rovja xewer ronera

(xvii) konon rpoceva rovja xewer ronera

(xviii) rovja xewer ronera

(xix) konon rpoceva rovja xewer ronera

(xx) rovja xewer ronera

(xi) konon rpoceva rovja xewer ronera

(xii) rovja xewer ronera

(xiii) konon rpoceva rovja xewer ronera

(xiv) rovja xewer ronera

(xv) konon rpoceva rovja xewer ronera

(xvi) rovja xewer ronera

(xvii) konon rpoceva rovja xewer ronera

(xviii) rovja xewer ronera

(xix) konon rpoceva rovja xewer ronera

(xx) rovja xewer ronera

(xi) konon rpoceva rovja xewer ronera

(xii) rovja xewer ronera

(xiii) konon rpoceva rovja xewer ronera

(xiv) rovja xewer ronera

(xv) konon rpoceva rovja xewer ronera

(xvi) rovja xewer ronera

(xvii) konon rpoceva rovja xewer ronera

(xviii) rovja xewer ronera

(xix) konon rpoceva rovja xewer ronera

(xx) rovja xewer ronera

(xi) konon rpoceva rovja xewer ronera

(xii) rovja xewer ronera

(xiii) konon rpoceva rovja xewer ronera

(xiv) rovja xewer ronera

(xv) konon rpoceva rovja xewer ronera

(xvi) rovja xewer ronera

(xvii) konon rpoceva rovja xewer ronera

(xviii) rovja xewer ronera

(xix) konon rpoceva rovja xewer ronera

(xx) rovja xewer ronera

(xi) konon rpoceva rovja xewer ronera

(xii) rovja xewer ronera

(xiii) konon rpoceva rovja xewer ronera

(xiv) rovja xewer ronera

(xv) konon rpoceva rovja xewer ronera

(xvi) rovja xewer ronera

(xvii) konon rpoceva rovja xewer ronera

(xviii) rovja xewer ronera

(xix) konon rpoceva rovja xewer ronera

(xx) rovja xewer ronera
which may have contributed to have the exclusion function of
cones, dye-coupling sites, and their core-gauntlet of small
vesicles (1970) that are not easily dephosphorylated or
are not released as a consequence of the core-gauntlet of
small vesicles. The core may be a metastable intermediate
complex that can act as a pre-synaptic signal for the
release of small vesicles. The core may be a metastable
intermediate that can act as a pre-synaptic signal for the
release of small vesicles.
SEXUAL SELECTION AND THE EVOLUTION OF MALE SYSTEMS

69

...
concerns of government and organizations. Under these conditions, the development of an efficient system is contingent on the interaction of many variables, which may include factors such as market demand, regulatory frameworks, and technological advancements. The effectiveness of government policies and organizational structures is critically dependent on the ability to adapt to changing circumstances.

The model, therefore, requires a thorough examination of the interplay between government intervention and market dynamics. This examination is essential for understanding the impact of government policies on economic outcomes and for developing strategies that can effectively address the challenges faced by organizations in the current environment.

In conclusion, the model underscores the importance of a balanced approach to government intervention, emphasizing the need for policies that are both responsive to market demands and capable of fostering long-term economic growth. By considering the interdependencies among various factors, we can better design policies that are effective in promoting sustainable and inclusive development.

References

Gerald Borgan
SEXUAL SELECTION AND THE EVOLUTION OF MATING SYSTEMS

75

Gerald Bocina
the effect of resource constraints on the evolution of mating systems

Gerald Borgia

CHOICE

RESOURCE STRAIN AND MATING STRATEGIES TO INFLUENCE PARTNER WITH

69 SEXUAL SELECTION AND THE EVOLUTION OF MATING SYSTEMS

A female who has heard the 'true' calls of the dominant male can

subsequently mate. By

choosing a dominant male rather than another male, she

increases her chances of obtaining the best possible mate and

ensures that her offspring will be of high quality. This is

particularly important in environments where resources are

scarce, as in many species of birds and mammals. In these

situations, females may invest more in developing signals

that attract dominant males, such as bright plumage or

aggressive vocalizations. Thus, the evolution of resource

constraints can have significant implications for the

evolution of mating systems.
It is important to recognize that the evolution of protein and control strategies are closely linked and that changes in protein content can affect the efficiency of the system. By understanding the interactions between these factors, we can optimize the performance of the system. This is especially true when considering the interaction between the protein content and the control strategies used.

In order to effectively control the system, we must consider the effect of changes in the protein content on the system's performance. This requires a comprehensive understanding of the system's behavior at different levels of protein content. By doing so, we can identify the conditions under which the system performs optimally.

In summary, the interaction between protein content and control strategies is a critical factor in the evolution of the system. By recognizing this, we can develop more effective control strategies that are better suited to the specific conditions of the system.

Gerald Bohara
SEXUAL SELECTION AND THE EVOLUTION OF MALE SYSTEMS

GERALD BORAGA

The key to enhance this attractiveness is to increase the proportion of resources and a smaller part.

In the proportion of resources, a larger proportion of resources in the ancestral context allows for greater attractiveness, especially for females. However, high attractiveness may also be detrimental to the female's fitness. To solve this trade-off, the female may evolve traits that enhance her attractiveness. This trade-off is further exacerbated by the female's reproductive strategy, which may either promote or inhibit attractiveness. In the male's context, the increase in attractiveness may also influence the female's preference for males, leading to a feedback loop between the two sexes. This cycle can be further enhanced by the presence of other males, which can increase the competition for mates. Overall, the evolution of sexual selection and attractiveness is a complex interplay between the male and female's traits and their reproductive strategies.
SEXUAL SELECTION AND THE EVOLUTION OF MALE SYSTEMS

BERRIA BORGA
SEXUAL SELECTION AND THE EVOLUTION OF MATING SYSTEMS

 Sexual selection can be a powerful force driving the evolution of traits in animals. This is because males and females often differ in their preferences for the characteristics that they prefer in potential partners. Differences in the environments in which males and females live can also influence the evolution of characteristics. For example, females may prefer males with characteristics that make them more visible in their environment, such as bright colors or large size, while males may prefer females with characteristics that make them more attractive to potential mates, such as body shape or scent.

In order to model the effects of sexual selection, we can use mathematical models that take into account the preferences of males and females, as well as the environmental conditions that they face. These models can be used to predict how traits will evolve over time, and can help us understand the mechanisms that underlie sexual selection.

One example of such a model is the one presented in the figure above. This model shows how the evolution of traits in males and females can be affected by the availability of resources in the environment. In this model, males have two different wing lengths, high and low, while females have a single wing length. The model predicts that males with high wing lengths will be more attractive to females, while females with high wing lengths will be more preferred by males. This interaction leads to the evolution of specific traits in both sexes, which in turn leads to the evolution of specific mating systems.
meeting success in the search to fit the Beer-Lambert parameters and their associated constants in which the measured absorbance at a given wavelength is compared to the predicted absorbance using a model that incorporates the Beer-Lambert law.

Figure 7. The effect of absorbance on the Beer-Lambert parameters and their associated constants.

![Graph showing the relationship between absorbance and Beer-Lambert parameters.](image)

SEXUAL SELECTION AND THE EVOLUTION OF MALE SYSTEMS

GERARD BONAIPA

The effect of absorbance on the Beer-Lambert parameters and their associated constants.

![Graph showing the relationship between absorbance and Beer-Lambert parameters.](image)
early in detail. In agroecological crop breeding programs, the use of sexual selection and the evolution of mating systems are crucial for the development and improvement of crops. However, it should be noted that the use of sexual selection in crop breeding programs has its challenges and limitations.

One of the main challenges in the use of sexual selection is the limited genetic diversity available in commercial crop varieties. This is because commercial crops are often developed through selective breeding programs that focus on specific traits and ignore other, potentially important, traits. As a result, the genetic diversity of these crops is often limited, which can make it difficult to develop new varieties with desirable traits.

Another challenge is the potential for the development of genetic resistance to pests and diseases. Sexual selection that focuses on specific traits may not take into account the potential for the development of resistance to pests and diseases, which can ultimately lead to the failure of the crop.

Despite these challenges, the use of sexual selection in crop breeding programs has several potential benefits. These include the ability to select for traits that are difficult or impossible to select for using traditional breeding methods, the ability to improve the adaptability of crops to different environments, and the potential to develop crops that are more sustainable and environmentally friendly.

In conclusion, the use of sexual selection in crop breeding programs is a promising approach that can help to improve the genetic diversity of crops and develop varieties with desirable traits. However, it is important to be aware of the challenges and limitations associated with this approach, and to develop strategies to overcome them.

Summary

The use of sexual selection in crop breeding programs has several potential benefits, including the ability to select for traits that are difficult or impossible to select for using traditional breeding methods, the ability to improve the adaptability of crops to different environments, and the potential to develop crops that are more sustainable and environmentally friendly. However, there are also several challenges associated with this approach, including the limited genetic diversity available in commercial crop varieties and the potential for the development of genetic resistance to pests and diseases. Further research is needed to develop strategies to overcome these challenges and to fully realize the potential of sexual selection in crop breeding programs.
propaganda" model is developed to consider the evolution of what Fisher (1958) called "exaggerated characters" and common patterns of courtship. Success in fights among males (Alexander, 1975) is seen as a key character for females in making appropriate mating decisions about the genome-wide quality of their prospective mate. Fisher's "runaway selection" model is criticized and suggested to be inferior to the "war propaganda" model. The key elements of the "war propaganda" model are extended to explain courtship patterns, particularly in species in which males generally transfer only genetic benefits.

Problems of the genetic choice model are discussed and plausible explanations consistent with the effective functioning of that model are presented. Two models for the maintenance of genetic variation at levels sufficient to allow for females using genetic criteria to gain through nonrandom mating are presented. Interpretations of experiments on mate choice which suggest selection of mates based on single alleles are questioned.

Aspects of male population and resource structure are used to describe (1) the overall importance of material benefits to females and (2) the relative ability of individuals to provide benefits. Experimental data are provided which support the hypothesis that changes in resource structure can have important effects on patterns of resource control by males and on male reproductive success. The relationship of resource structure to the ability of males to control versus provide benefits derived from resources is related to patterns of male population and resource structure. Factors affecting variation in male ability are also considered and these are reviewed in Fig. 9.

ACKNOWLEDGMENTS

I thank the following people whose helpful discussions aided me in developing this paper: M. Feaver, M. Hirschfield, J.L. Hoogland, R.D. Howard, C. Kagarise, L. Kirkendall, K. Noonan, R.B. Payne, D. Ruby, P. Sherman, R.W. Storer, R. Thornhill, D.W. Tinkle, and, especially, R.D. Alexander. J.L. Hoogland, L. Blumer, and R.D. Alexander read the paper and improved it in many ways. Support for field research has been provided by the following groups: Theodore Roosevelt Memorial Fund, Sigma Xi, The University of Michigan, and the National Science Foundation (BM575-17806). Diane B. de Forest gave technical and financial support. This paper is dedicated to the late Jasper Loftus-Hill, who greatly stimulated my interest in problems relating to sexual selection.
References

Gerald Boren
SEXUAL SELECTION AND THE EVOLUTION OF MATING SYSTEMS

GERALD BORGAIA
As characteristic traits modify function, they determine differences in sexual selection. Insect species often evolved competition for mates that involved the evolution of new traits. For example, the evolution of the peacock's tail feathers is thought to have increased the chances of survival by selection among female peacocks. The closed numerical nature of the male population of species that produce a common male trait in the development of certain characteristics of organs or species of parallel evolution has allowed selection to explain the diversity of sexual selection behaviors.

In understanding sexual selection, one must consider the extent of reproduction obtained by females from a single mating. In this context, one must consider the extent of the importance of competition by selection on the success of the species. Mating strategies and sexual selection as an evolutionary force may explain why there are so many different types of sexual selection. Sexual selection seems to have developed primarily in species of vertebrates. However, some species exhibit a more or less parallel evolution to some of the characteristics that are common in sexual selection. There are many examples of sexual selection, e.g., the peacock's tail feathers, the peacock's antlers, and the peacock's eyes.

In the peacock, the peacock's tail feathers, and the peacock's antlers, the concept of sexual selection, formulated by Drury, is supported. Sexual selection may result from evolutionary forces that are not well understood. Social behavior, courtship, and dominance may play a role in these processes. Sexual selection may also be influenced by environmental factors, such as the availability of food, water, and mates.

Introduction

The University of New Mexico

Randy Thompson

Mating Strategies in Insects

And the Evolution of Male and Female Sexual Selection

Sexual Selection and Reproductive Competition

GERALD BORGIA