
Abstract Nonlinear response curves are often used to
model the physiological responses of plants. These mod-
els are preferable to polynomials because the coefficients
fit to the curves have biological meaning. The response
curves are often generated by repeated measurements on
one subject, over a range of values for the environmental
variable of interest. However, the typical analysis of dif-
ferences in coefficients between experimental groups
does not include a repeated measures approach. This may
lead to inappropriate estimation of error terms. Here, we
show how to combine mixed model analysis, available in
SAS, that allows for repeated observations on the same
experimental unit, with nonlinear response curves. We 
illustrate the use of this nonlinear mixed model with a
study in which two plant species were grown under con-
trasting light environments. We recorded light levels and
net photosynthetic response on anywhere from 8 to 10
points per plant and fit a Mitscherlich model in which
each plant has its own coefficients. The coefficients for
the photosynthetic light-response curve for each plant
were assumed to follow a multivariate normal distribu-
tion in which the mean was determined by the treatment.
The approach yielded biologically relevant coefficients
and unbiased standard error estimates for multiple treat-
ment comparisons.
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Introduction

Many ecological and physiological studies include the
analysis of response curves, commonly constructed by
plotting a measured variable against a range of a factor
that affects the variable. For example, soil incubation
studies measure reaction rates, microbial activity, or mi-
crobial biomass in soil ecosystems over time (Coleman
and Crossley 1996). Plant physiological ecologists mea-
sure photosynthetic rates in response to a variety of envi-
ronmental variables, including light, temperature, humid-
ity, or carbon dioxide concentration (Larcher 1995).

Physiological response curves that are measured in re-
sponse to an experimental treatment are often nonlinear
and contain repeated measurements on the same experi-
mental unit. As a result, these data require the use of a
nonlinear function with a statistical treatment that will in-
clude both fixed (treatment) and random (experimental
unit) effects. Fixed effect analyses are one of the most
common statistical inference techniques used in cases
where the researcher designates the levels of interest. For
example, temperature and species would be fixed effects
in an experiment where plants from two different species
are grown in different temperature regimes set by the in-
vestigator. In contrast, random effects, or experimental
unit effects, are those factors whose variation is due to
membership of some larger population of potential sub-
jects. When multiple observations are recorded on the
same unit, any factor or coefficient that may vary from
unit to unit is regarded as random. So a mean of a popula-
tion is fixed because all units from that population have
that mean in common. However, individual units (e.g.,
plants or leaves) may exhibit random deviations from that
population mean. In the previous example, random 
effects would stem from samples of different leaves from
the same plant, or from repeated measurements on the
same leaf over time. A mixed model is one that incorpo-
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rates both fixed and random effects. Repeated measure-
ments often incorporate both random effects because
measurements are taken on the same experimental unit
(e.g., the same plant, or the same leaf) and fixed effects
since most researchers are interested in making infer-
ences about a treatment group on the basis of the subjects
sampled. Potvin et al. (1990) recognized that such 
response curves should utilize a repeated measures 
approach. They suggested several techniques, including
repeated measures ANOVA, multivariate repeated mea-
sures ANOVA, and nonparametric split-plot analysis. 
The preferable analysis depended upon assumptions 
of each model. However, models suggested by Potvin 
et al. (1990) were linear, and were therefore only able 
to test treatment differences. Lost was the ability to test
biologically meaningful parameters from common non-
linear functions (e.g., k from a Michaelis-Menten rela-
tionship).

This influential paper gave direction to ecophysiolo-
gists when analyzing response curves. To date, Potvin 
et al. (1990) has been cited 265 times according to the
Science Citation Index. However, numerous studies
since the publication of Potvin et al. (1990) still fail to
treat response curves with a repeated measures ap-
proach. We conducted a survey of 16 ecological journals
that published papers since 1991 that reported the re-
sults of photosynthetic responses to light and CO2. We
found 56 papers that did not cite Potvin et al. (1990),
and only one of these papers used a repeated measures
linear model. Thirty-five used common curve-fitting
programs lacking a repeated measures approach (e.g.,
Sigma Plot or Systat) to fit data to a nonlinear function.
Five others dissociated curves into linear portions and
used least squares linear regression techniques. Twelve
papers calculated means and their respected standard 
errors at each CO2 or light level to examine treatment
differences and three papers fitted higher order polyno-
mials to the data.

Significant advancements in computing power and
statistical software have been made since 1990. These
advances now make possible a nonlinear regression anal-
ysis of response curves that was only briefly mentioned
in Potvin et al. (1990). At that time, this technique had
numerous limitations, including the necessity of a fixed
design matrix (i.e., fixed values for the independent vari-
able) and the inability of the analysis to handle unbal-
anced or incomplete data. Here, we illustrate an analysis
of response curves that overcomes the problems Potvin
et al. (1990) pointed out when using nonlinear models.
We combine the advantages of a mixed model analysis
with the straightforward interpretability of nonlinear
curves. We used procedures available in a widespread
statistical package (SAS 2000), to apply nonlinear mixed
models to photosynthetic light response curves that are
typical of many physiological plant ecology studies
where light levels are not fixed. We then compare the re-
sults of the nonlinear mixed model analysis with a fixed
effects ANOVA, which was the most common analysis
approach seen in our survey.

Materials and methods

Data collection and treatments

Data presented here were part of a study to examine the effects of
light environment during growth on photosynthetic characteristics
of two eastern North American, herbaceous legumes, Stropho-
styles helvola and Amphicarpa bracteata (Prichard and Forseth
1988a, b). Plants were grown in a glasshouse on the University of
Maryland, College Park campus from February to June, where
they were watered to saturation daily and fertilized bimonthly with
Peters 20-20-20. Individuals were randomly assigned into two
light treatments. Low light treatments were grown under shade
cloths that reduced incident light levels over 10-fold [2.4 mol m–2

total daily photosynthetic photon flux (PPF, radiation between
400–700 nm) on April 30] compared to unshaded, high light treat-
ments (34.3 mol m–2 total PPF on April 30).

The response of net photosynthesis (A) to incident PPF was
measured on leaves of three randomly selected plants from each
species per treatment. Two to three leaflets from the palmately
compound leaves of each individual were placed within the cu-
vette of a Bingham Interspace (Logan, Utah) Model BI-IIdp pho-
tosynthetic system (Prichard and Forseth 1988b). Temperature,
CO2 concentration, and humidity inside the cuvette were main-
tained at constant levels during the measurement cycle. Steady-
state values of A and stomatal conductance were maintained for
10–15 min at each PPF from 1,800 down to 0 µmol m–2 s–1, at
which point A and PPF were recorded. Light level was modified
through the use of neutral density filters. Eight to 10 points per
plant were measured.

Model fitting

Our approach utilizes a nonlinear mixed model in the form:

(1)

where f is some nonlinear function of known vector covariates (xij)
for the jth observation on the ith subject, unknown fixed effect pa-
rameters (β), an unknown vector of random effect parameters (ui),
and unknown random errors (eij) (Davidian and Giltinan 1995).
For our experiment, our fixed effect (β) treatment design is a 2×2
factorial with two plant species (S. helvola and A. bracteata) and
two light regimes (high and low light). Taking repeated measure-
ments on the same leaflets at different light levels necessitates in-
corporation of random effects (ui). If random effects were not in
our model, the assumption of independent error terms would be
violated, producing biased standard errors. The nonlinear function
(f) we used in Eq. 1 was the Mitscherlich model equation (after
Potvin et al. 1990):

(2)

where Amax represents the asymptote of photosynthesis at high
light, Aqe corresponds to the initial slope of the curve at low light
levels, LCP denotes the x-intercept, when net photosynthesis is
equal to zero, PPF refers to the incident photosynthetic photon
flux and A is net photosynthesis, the response variable. Each un-
known parameter has physiological meaning relating to plant per-
formance. The three used in the model identify the light saturated
rate of photosynthesis (Amax), apparent quantum yield (Aqe), and
the photosynthetic light compensation point (LCP). Since the three
parameters (Amax, Aqe and LCP) vary by individual plant, we as-
sumed that the mean of these three terms varied by treatment and
that these coefficients followed a multivariate normal distribution.
The latter allowed Amax, Aqe and LCP to be correlated, so that a
plant with an above average Amax might be expected to have an
above average initial slope (Aqe).

We used a nonlinear mixed models procedure in SAS Version
8 (SAS 2000) to fit curves to photosynthetic data from each plant
using to the nonlinear Eq. 2 with the fixed and random effects in
Eq. 1. The mean of the three parameters (Amax, Aqe, and LCP) was
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modeled in two different ways to incorporate our treatment design.
First it was modeled analogous to a one way model in which each
of the four treatments had its own mean for each of the three
terms. Performing a multiple comparison procedure following
such an analysis required using SAS/IML, since NLINMIXED 
has no contrast or multiple comparison procedures. Next it was
modeled as a two-way ANOVA in which species and light regime
were factors. In a 2×2 factorial, main effects and interactions for a
given parameter only involve a single coefficient, so no multiple
comparison procedures were required. Both methods are described
below in Analysis of parameter estimates. Once our model was 
established by combining Eqs. 1, and 2, we needed to provide ini-
tial estimates of the parameters (Amax, Aqe and LCP) to start itera-
tions. Seed estimates for each parameter were obtained using
PROC NLIN in SAS. This procedure gives reasonable starting
values for successful convergence but ignores the repeated mea-
sures aspects of the study design. It was necessary to re-scale the
slope (Aqe) by a factor of 0.0001 due to convergence problems 
attributed to rounding error. Several integral approximations and
optimization algorithms exist in SAS to model random effects and
to minimize iteration time and memory, which are described else-
where (Pinheiro and Bates 1995; SAS 2000).

Analysis of parameter estimates

Conventional fixed effects ANOVA models can be analyzed using
a regression model based on dummy variables (Kleinbaum et al.
1988). The primary function of coding dummy variables is to ex-
amine individual levels of fixed effect treatments by assigning co-
efficients (e.g., 0 or 1) to different levels of treatment. In effect, a
value of 0 drops that treatment level from analysis, while a value
of 1 includes the level of that treatment. Normally, procedures
such as PROC GLM in SAS, as well as comparable packages, do
this coding automatically when the user specifies a CLASS state-
ment. The nonlinear mixed model procedure in SAS lacks a class
statement, so the user must code dummy variables for a particular
treatment design. We need k–1 dummy variables if k treatment
levels are to be compared (see Appendix lines 0001–0005). For
each parameter in our model (i.e., Amax, Aqe and LCP), we wrote a
one-way ANOVA model to analyze treatment effects:

(3)

where Amax ij is the parameter estimate for the jth plant in the ith
treatment group, γ1 is the mean of Amax for the last treatment group
and γi is the mean of Amax for the ith treatment group minus the mean
of Amax of the last treatment group where i=1, 2,..., k–1. Under this
model, if γi=0 for i=1, 2,..., k–1, then all treatments have the same
mean. For our example we had four treatment groups (two species
at two light levels). We therefore coded 4–1, or 3 dummy variables.
We arbitrarily set our treatment order to be, S. helvola high light as
γ0, S. helvola low light as γ1, A. bracteata high light as γ2 and 
A. bracteata low light as γ3. Therefore, the mean of S. helvola low
light is defined as γ1+γ0, the mean of A. bracteata high light is γ2+
γ0 and so on. Thus, all other treatment groups were re-scaled from 
S. helvola high light (γ0). For example, we obtained an Amax parame-
ter estimate of 42 for S. helvola high light and an Amax parameter 
estimate of –27 for S. helvola low light from our initial model out-
put. The actual parameter estimate of S. helvola low light is not –27,
but must be re-scaled as a function of S. helvola high light. We
therefore added –27 to 42, yielding a parameter estimate of 15 for 
S. helvola low light (Table 2).

Thus far, we have chosen the appropriate statistical model for
our data (Eq. 1), chosen an appropriate nonlinear function to fit our
data (Eq. 2), and coded our treatment design (Eq. 3), thus combin-
ing Eqs. 1, 2 and 3 for the full analysis (see Appendix for syntax).
To start the model iterations we used the estimates obtained in
NLIN, ignoring random effects, to generate initial values of γ1, γ2
and γ3 for Amax, and did the same for Aqe and LCP. NLINMIX uses
an iterative approach based on these initial values to generate a so-
lution that properly accounts for repeated measures designs. The
NLINMIX procedure generated estimates of all 12 parameters 

(4 treatments with 3 parameters per treatment) along with an esti-
mated covariance matrix. We fed these values into SAS/IML to test
hypotheses using Wald’s test (Davidian and Giltinan 1995). Wald’s
test can be used to test hypotheses concerning either single or mul-
tiple parameters. For example, we can ask if there are differences
in the overall response curves for the four treatment groups, or if
Amax differs significantly among treatment groups. To be consistent
with NLINMIX, we modified the critical value from Wald’s test to
be from the appropriate F-distribution. Wald’s statistic normally
compares the square of (estimate/standard error) to a χ2 table value
for testing a single parameter. So, we chose an F1, ddfm where the
denominator degrees of freedom (ddfm) are the degrees of freedom
used in the t-tests in the NLINMIX procedure. If this modification
were not made, conclusions would be sensitive to which treatment
group was coded last. Users may also adjust for multiple compari-
sons using Bonferonni adjustments (Kleinbaum et al. 1998). Since
our treatment design was also a 2×2 factorial, we substituted an 
alternative model for Eq. 3 to examine main effects and interac-
tions:

(4)

where Z1=1 if species is S. helvola and Z1=–1 otherwise; and Z2=1
if high light regime and Z2=–1 otherwise; γ1 represents the main
effect of species, γ2 is the main effect for light regime and γ3 is the
interaction.

Finally, we analyzed the parameter estimates obtained with the
NLIN method (ignoring random effects) in a fixed effect ANOVA
to compare the conclusions made from the fixed effect ANOVA
and the nonlinear mixed model.

Results

We obtained estimates for each of the three model param-
eters for S. helvola plants grown in high light, S. helvola
plants grown in low light, A. bracteata plants grown in
high light, and A. bracteata plants grown in low light
(Fig. 1). Mixed model analysis showed that S. helvola
plants grown under high light had a significantly higher
photosaturated photosynthetic rate (Amax) than A. bracte-
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Fig. 1 Plot of net photosynthetic CO2 assimilation against inci-
dent photosynthetic photon flux for plants of two species grown
under two different light environments. Also shown are fitted
curves with model equations from parameter estimates obtained
from a nonlinear mixed models analysis



ata plants grown under high light. Both species grown in
high light had significantly higher photosaturated photo-
synthetic rates than either species grown in low light treat-
ments, yielding a main effect of light (Table 1, F1, 9=70.8,
P<0.0001). In addition, S. helvola had significantly higher
Amax values compared to A. bracteata producing a main
effect of species (Table 1, F1, 9=10.6, P<0.01). The main
effect of light was also significant for apparent quantum
yield (Table 1, F1, 9=6.1, P<0.05). The low light treat-
ments, however, were not significantly different across
species (Table 1). No significant differences were found
for the parameter estimates for apparent quantum yield
(Aqe) and dark respiration (LCP) within species or light 
regime (Table 1). There were also no interaction effects
(Table 1). 

The fixed effect ANOVA model generated the same
statistical conclusion for photosaturated photosynthetic
rates (Amax) (Table 2). However, the standard error esti-
mates are all equal (due to the assumption of homogene-
ity of variances in the ANOVA model) and smaller than
the repeated measures analysis (Table 2). In contrast to
mixed model results, significant treatment differences
were found for quantum yield (Aqe) and dark respiration

(LCP) (Table 2). This is due primarily to smaller stan-
dard error estimates. Therefore, the results given in the
fixed effects ANOVA may be misinterpreted as being
significantly different as a result of biased standard 
errors due to incorrectly accounting for the correlation of
data points within each curve.

Discussion

Advantages of combining mixed models 
with nonlinear equations

Software to model linear models with repeated measures
has progressed considerably since Potvin et al. (1990).
With procedures available in SAS and S-plus, unbalanced
and unequally replicated repeated measures designs can
be accommodated. In addition, variability and correlation
among observations may be modeled. Even correlation of
data replicated in time and space can be accommodated
to some degree in these readily accessible procedures
(Littell et al. 1996). However, these procedures fail to 
allow nonlinear equations to enter into the model.
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Table 1 Statistical comparison
of photosaturated photosynthe-
sis (Amax), apparent quantum
yield (Aqe), and light compen-
sation point (LCP), parameter
estimates modeled as a one-
way ANOVA and as a two-way
factorial with main effects and
interactions. Modified F-tests
(F1, 9) were performed for each
parameter estimate using the
estimated covariance matrix
(see text for details)

Amax Aqe LCP

Species effects within light regimes (Strophostyles helvola vs Amphicarpa bracteata)
High light *F=7.9 *F=4.3 F=0.2

P<0.05 P<0.05 P>0.05
Low light F=2.6 F=0.8 F=0.04

P>0.05 P>0.05 P>0.05

Light effects within species (high light vs low light)
S. helvola *F=34.6 F=4.2 F=0.4

P<0.05 P>0.05 P>0.05
A. bracteata *F=42.6 F=2.5 F=0.3

P<0.05 P>0.05 P>0.05

2×2 factorial analysis
Species *F=10.6 F=2.4 F=5.1

P<0.01 P>0.05 P>0.05
Light *F=70.8 *F=6.1 F=0.19

P<0.0001 P<0.05 P>0.05
Species×Light F=1.9 F=1.2 F=0.78

P>0.05 P>0.05 P>0.05

*Significant at P<0.05

Table 2 Summary of parameter estimates with statistical compar-
isons for the nonlinear mixed model and the fixed effect ANOVA
model. Means are presented with standard errors for each of the
three parameter estimates. Statistical comparisons for the non-
linear mixed model are based on probabilities in Table 1. The

fixed effect analysis is based on LSD pair-wise comparisons. 
Different letters assigned to means in the same column designate
statistically significant differences at the 0.05 level, the same 
letters indicate nonsignificance

Treatment Photosaturated photosynthesis Apparent quantum yield Light compensation point
(Amax) (Aqe) (LCP)

Mixed Fixed Mixed Fixed Mixed Fixed

S. helvola, High light 42±4.3a 42±2.7a 0.0011±0.00026a 0.0011±0.00018a 40±21a 41±4.6a

S. helvola, Low light 15±4.7c 15±2.7c 0.0035±0.00096a 0.0036±0.00018b 20±30a 17±4.6b

A. bracteata, High light 29±4.8b 29±2.7b 0.0022±0.00044a 0.0022±0.00018c 30±26a 25±4.6b

A. bracteata, Low light 10±4.7c 10±2.7c 0.0056±0.00215a 0.0059±0.00018d 10±30a 12±4.6b



Nonlinear mixed models are not new and have been
used in pharmacokinetic research for many years (Vonesh
and Chinchilli 1997). For example, simple compartment
models are used to derive nonlinear equations describing
changes in blood concentration over time. However, non-
linear mixed model analysis is underused in the ecologi-
cal literature. We could find only two studies that used
this technique (Piepho 1999; Myers et al. 2001). Piepho
(1999) fitted nonlinear models to environmental response
variables for different genotypes, emphasizing the biolog-
ical meaning of parameter estimates. Myers et al. (2001)
determined biologically reasonable parameter estimates
for carrying capacities of North Atlantic cod populations
using nonlinear mixed model regression. In addition,
Scheiner and Gurevitch (2001) discuss repeated measures
and nonlinear responses as separate analyses, but do not
address the utility of combining the two.

Nonlinear mixed models combine several useful fea-
tures of previously available analyses. They can account
for both repeated measures ANOVA (Potvin et al. 1990)
and nonlinear responses of test subjects (Ratkowsky
1983). The nonlinear mixed models procedures in SAS
and in S-plus are flexible, allowing the user to decide
which parameters are fixed and which are random. An
appropriate coding of dummy variables (see Kleinbaum
et al. 1988) can easily accommodate many treatment de-
signs. In addition, fitting an appropriate nonlinear model
lends biological meaning to estimated parameters. Of
particular interest to physiological ecologists is the use
of hypothesis testing for differences in parameter esti-
mates (i.e., slopes, intercepts, asymptotes). For example,
biochemical models of photosynthesis relate curve 
parameters to specific limitations in the photosynthetic
pathway (Farquhar and Sharkey 1982). Being able to 
obtain parameter estimates for those models and doing
tests of significance is an extremely useful tool for treat-
ment comparisons.

Potvin et al. (1990) pointed out that a fixed design
matrix (i.e., fixed levels of the independent variable) for
each experimental unit had to be used, due to limitations
in computing power in nonlinear curve analysis. Any
variability in the independent variable would lead to loss
of precision of the parameter estimates. For example,
Currie (1982) determined that variability in the design
matrix influenced the precision of the parameter esti-
mates of the Michaelis-Menten equations. Here again,
advances in statistical software, particularly integration
of maximum likelihood algorithms, and computing 
power eliminate any problems with the values assigned
to the design matrix. These iterative algorithms allow 
for the values assigned independent variable to be con-
tinually updated for each experimental unit (Pinheiro and
Bates 1995). Typically, photosynthetic response curves
do not have fixed independent values due to methodol-
ogy or instrument limitations. In the photosynthetic data
we used here, neutral density filters were implemented to
modify PPF levels, which consequently varied for each
measurement cycle – producing different levels of PPF
for each plant, i.e., the design matrix.

Nonlinear mixed procedure can fit nonlinear models
to situations where both fixed and random effects are
nonlinear. PROC NLMIXED fits the model by maxi-
mum likelihood techniques. Several other algorithms and
iterative approaches are available (SAS 2000), which 
allow different distribution assumptions for the response
variable (e.g., normal, binomial or Poisson). In our 
model, we assumed independence across subjects, but
correlation within subjects due to repeated observations
on the same experimental unit. Random effects were also
assumed to follow a bivariate normal distribution. These
assumptions may be modified on a case-by-case basis. A
more extensive discussion of nonlinear mixed models
methods can be found in Davidian and Giltinan (1995),
Pinheiro and Bates (1995), Vonesh and Chinchilli (1997)
and McCulloch and Searle (2000).

Applications of nonlinear mixed models

Nonlinear response data are prevalent in environmental
and ecological studies. Some of the most common are 
logistic growth curves, photosynthetic response curves
(Larcher 1995), pressure volume curves (Urban et al.
1993), hydraulic conductivity analysis (Sperry et al.
1988) and numerous uses of the Michaelis-Menten kinet-
ic equations. These models all have the advantage of
having biologically meaningful parameters. They also
require a rigorous statistical handling of correlated data
because measurements are often taken on the same sub-
ject (Werker and Jaggard 1997), or on the same sample
(Lindstrom et al. 1998). The benefit of this method is
that it is not limited to a defined set of nonlinear equa-
tions or treatment design. The user defines the nonlinear
model that applies to a particular data set or response
curve then codes the appropriate treatment schedule 
with dummy variables. This technique could therefore
apply to numerous areas of study, such as growth analy-
sis (Zeger and Harlow 1987), dose-response curves 
(Calabrese and Baldwin 1999 and references within),
survivorship curves (Karban 1997), and developmental
patterns (Knight et al. 1991).

Conclusions

The advancement of statistical methodology and com-
puting power has significantly expanded the techniques
available to ecologists for data analysis. We advocate 
using nonlinear mixed models for a more rigorous statis-
tical analysis of correlated data, particularly in the case
of data with repeated measures, where many of the prior
limitations have been alleviated (Potvin et al. 1990).
Mixed model approaches are also appropriate for unbal-
anced or incomplete data sets, the norm in ecological
studies. They allow better analysis of data collected out-
side of a fixed design matrix, another common problem
in ecology due to instrumentation limitations, time con-
straints, or methodological differences. Nonlinear mixed
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models have the further advantage of being able to attach
biological meaning to parameters of nonlinear curves, a
decided advantage when interpreting higher order func-
tions. A final benefit of nonlinear mixed models, is that
they do not require large numbers of observations on
each experimental unit.
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Appendix

Nonlinear mixed model SAS syntax with a four-treat-
ment design (SAS 2000).

● 0001 ****Coding dummy variables for k–1 treatment
groups;

● 0002 if cat=’SH’ then do; z1=0; z2=0; z3=0; end;
● 0003 if cat=’SL’ then do; z1=1; z2=0; z3=0; end;
● 0004 if cat=’AH’ then do; z1=0; z2=1; z3=0; end;
● 0005 if cat=’AL’ then do; z1=0; z2=0; z3=1; end;
● 0006 *****Initiating nonlinear mixed model proce-

dure;
● 0007 Proc nlmixed data=Light;
● 0008 ****Initial seed estimates from Proc NLIN pro-

cedure to start iterations;
● 0009 parms b01=35 b11=–20 b21=–5 b31=–25
● 0010 b02=65 b12=–10 b22=5 b32=–3
● 0011 b03=34 b13=–10 b23=–10 b33=–10;
● 0012 ****Modeling parameter estimates for 4 treat-

ments using dummy variable coding;
● 0013 b1=b01+b11*z1+b21*z2+b31*z3+u1;
● 0014 b2=b02+b12*z1+b22*z2+b32*z3+u2;
● 0015 b3=b03+b13*z1+b23*z2+b33*z3+u3;
● 0016 ****Nonlinear Mitscherlich model;
● 0017 e=exp[(–0.0001*b2)*(P–b3)];
● 0018 pred=b1*(1–e);
● 0019 ****Gaussian quadrature algorithm; model A 

~normal(pred, 8);
● 0020 ****Specifying random effects with mean=0

and variances=8;
● 0021 random u1 u2 u3 ~ normal ([0, 0, 0],[8, 8, 8, 8,

8, 8]) subject=plant; Quit;
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